Abstract:Score Distillation Sampling (SDS) leverages pretrained 2D diffusion models to advance text-to-3D generation but neglects multi-view correlations, being prone to geometric inconsistencies and multi-face artifacts in the generated 3D content. In this work, we propose Coupled Score Distillation (CSD), a framework that couples multi-view joint distribution priors to ensure geometrically consistent 3D generation while enabling the stable and direct optimization of 3D Gaussian Splatting. Specifically, by reformulating the optimization as a multi-view joint optimization problem, we derive an effective optimization rule that effectively couples multi-view priors to guide optimization across different viewpoints while preserving the diversity of generated 3D assets. Additionally, we propose a framework that directly optimizes 3D Gaussian Splatting (3D-GS) with random initialization to generate geometrically consistent 3D content. We further employ a deformable tetrahedral grid, initialized from 3D-GS and refined through CSD, to produce high-quality, refined meshes. Quantitative and qualitative experimental results demonstrate the efficiency and competitive quality of our approach.
Abstract:Human image animation aims to generate human videos of given characters and backgrounds that adhere to the desired pose sequence. However, existing methods focus more on human actions while neglecting the generation of background, which typically leads to static results or inharmonious movements. The community has explored camera pose-guided animation tasks, yet preparing the camera trajectory is impractical for most entertainment applications and ordinary users. As a remedy, we present an AnimateAnywhere framework, rousing the background in human image animation without requirements on camera trajectories. In particular, based on our key insight that the movement of the human body often reflects the motion of the background, we introduce a background motion learner (BML) to learn background motions from human pose sequences. To encourage the model to learn more accurate cross-frame correspondences, we further deploy an epipolar constraint on the 3D attention map. Specifically, the mask used to suppress geometrically unreasonable attention is carefully constructed by combining an epipolar mask and the current 3D attention map. Extensive experiments demonstrate that our AnimateAnywhere effectively learns the background motion from human pose sequences, achieving state-of-the-art performance in generating human animation results with vivid and realistic backgrounds. The source code and model will be available at https://github.com/liuxiaoyu1104/AnimateAnywhere.
Abstract:Satellite imagery and maps, as two fundamental data modalities in remote sensing, offer direct observations of the Earth's surface and human-interpretable geographic abstractions, respectively. The task of bidirectional translation between satellite images and maps (BSMT) holds significant potential for applications in urban planning and disaster response. However, this task presents two major challenges: first, the absence of precise pixel-wise alignment between the two modalities substantially complicates the translation process; second, it requires achieving both high-level abstraction of geographic features and high-quality visual synthesis, which further elevates the technical complexity. To address these limitations, we introduce EarthMapper, a novel autoregressive framework for controllable bidirectional satellite-map translation. EarthMapper employs geographic coordinate embeddings to anchor generation, ensuring region-specific adaptability, and leverages multi-scale feature alignment within a geo-conditioned joint scale autoregression (GJSA) process to unify bidirectional translation in a single training cycle. A semantic infusion (SI) mechanism is introduced to enhance feature-level consistency, while a key point adaptive guidance (KPAG) mechanism is proposed to dynamically balance diversity and precision during inference. We further contribute CNSatMap, a large-scale dataset comprising 302,132 precisely aligned satellite-map pairs across 38 Chinese cities, enabling robust benchmarking. Extensive experiments on CNSatMap and the New York dataset demonstrate EarthMapper's superior performance, achieving significant improvements in visual realism, semantic consistency, and structural fidelity over state-of-the-art methods. Additionally, EarthMapper excels in zero-shot tasks like in-painting, out-painting and coordinate-conditional generation, underscoring its versatility.
Abstract:With the emergence of transformer-based architectures and large language models (LLMs), the accuracy of road scene perception has substantially advanced. Nonetheless, current road scene segmentation approaches are predominantly trained on closed-set data, resulting in insufficient detection capabilities for out-of-distribution (OOD) objects. To overcome this limitation, road anomaly detection methods have been proposed. However, existing methods primarily depend on image inpainting and OOD distribution detection techniques, facing two critical issues: (1) inadequate consideration of the objectiveness attributes of anomalous regions, causing incomplete segmentation when anomalous objects share similarities with known classes, and (2) insufficient attention to environmental constraints, leading to the detection of anomalies irrelevant to autonomous driving tasks. In this paper, we propose a novel framework termed Segmenting Objectiveness and Task-Awareness (SOTA) for autonomous driving scenes. Specifically, SOTA enhances the segmentation of objectiveness through a Semantic Fusion Block (SFB) and filters anomalies irrelevant to road navigation tasks using a Scene-understanding Guided Prompt-Context Adaptor (SG-PCA). Extensive empirical evaluations on multiple benchmark datasets, including Fishyscapes Lost and Found, Segment-Me-If-You-Can, and RoadAnomaly, demonstrate that the proposed SOTA consistently improves OOD detection performance across diverse detectors, achieving robust and accurate segmentation outcomes.
Abstract:Temporal Action Detection and Moment Retrieval constitute two pivotal tasks in video understanding, focusing on precisely localizing temporal segments corresponding to specific actions or events. Recent advancements introduced Moment Detection to unify these two tasks, yet existing approaches remain confined to closed-set scenarios, limiting their applicability in open-world contexts. To bridge this gap, we present Grounding-MD, an innovative, grounded video-language pre-training framework tailored for open-world moment detection. Our framework incorporates an arbitrary number of open-ended natural language queries through a structured prompt mechanism, enabling flexible and scalable moment detection. Grounding-MD leverages a Cross-Modality Fusion Encoder and a Text-Guided Fusion Decoder to facilitate comprehensive video-text alignment and enable effective cross-task collaboration. Through large-scale pre-training on temporal action detection and moment retrieval datasets, Grounding-MD demonstrates exceptional semantic representation learning capabilities, effectively handling diverse and complex query conditions. Comprehensive evaluations across four benchmark datasets including ActivityNet, THUMOS14, ActivityNet-Captions, and Charades-STA demonstrate that Grounding-MD establishes new state-of-the-art performance in zero-shot and supervised settings in open-world moment detection scenarios. All source code and trained models will be released.
Abstract:This paper provides a review of the NTIRE 2025 challenge on real-world face restoration, highlighting the proposed solutions and the resulting outcomes. The challenge focuses on generating natural, realistic outputs while maintaining identity consistency. Its goal is to advance state-of-the-art solutions for perceptual quality and realism, without imposing constraints on computational resources or training data. The track of the challenge evaluates performance using a weighted image quality assessment (IQA) score and employs the AdaFace model as an identity checker. The competition attracted 141 registrants, with 13 teams submitting valid models, and ultimately, 10 teams achieved a valid score in the final ranking. This collaborative effort advances the performance of real-world face restoration while offering an in-depth overview of the latest trends in the field.
Abstract:Real-world image de-weathering aims at removingvarious undesirable weather-related artifacts, e.g., rain, snow,and fog. To this end, acquiring ideal training pairs is crucial.Existing real-world datasets are typically constructed paired databy extracting clean and degraded images from live streamsof landscape scene on the Internet. Despite the use of strictfiltering mechanisms during collection, training pairs inevitablyencounter inconsistency in terms of lighting, object position, scenedetails, etc, making de-weathering models possibly suffer fromdeformation artifacts under non-ideal supervision. In this work,we propose a unified solution for real-world image de-weatheringwith non-ideal supervision, i.e., a pseudo-label guided learningframework, to address various inconsistencies within the realworld paired dataset. Generally, it consists of a de-weatheringmodel (De-W) and a Consistent Label Constructor (CLC), bywhich restoration result can be adaptively supervised by originalground-truth image to recover sharp textures while maintainingconsistency with the degraded inputs in non-weather contentthrough the supervision of pseudo-labels. Particularly, a Crossframe Similarity Aggregation (CSA) module is deployed withinCLC to enhance the quality of pseudo-labels by exploring thepotential complementary information of multi-frames throughgraph model. Moreover, we introduce an Information AllocationStrategy (IAS) to integrate the original ground-truth imagesand pseudo-labels, thereby facilitating the joint supervision forthe training of de-weathering model. Extensive experimentsdemonstrate that our method exhibits significant advantageswhen trained on imperfectly aligned de-weathering datasets incomparison with other approaches.
Abstract:The widespread application of artificial intelligence (AI) in various tasks, along with frequent reports of conflicts or violations involving AI, has sparked societal concerns about interactions with AI systems. Based on Wrightsman's Philosophies of Human Nature Scale (PHNS), a scale empirically validated over decades to effectively assess individuals' attitudes toward human nature, we design the standardized psychological scale specifically targeting large language models (LLM), named the Machine-based Philosophies of Human Nature Scale (M-PHNS). By evaluating LLMs' attitudes toward human nature across six dimensions, we reveal that current LLMs exhibit a systemic lack of trust in humans, and there is a significant negative correlation between the model's intelligence level and its trust in humans. Furthermore, we propose a mental loop learning framework, which enables LLM to continuously optimize its value system during virtual interactions by constructing moral scenarios, thereby improving its attitude toward human nature. Experiments demonstrate that mental loop learning significantly enhances their trust in humans compared to persona or instruction prompts. This finding highlights the potential of human-based psychological assessments for LLM, which can not only diagnose cognitive biases but also provide a potential solution for ethical learning in artificial intelligence. We release the M-PHNS evaluation code and data at https://github.com/kodenii/M-PHNS.
Abstract:Although recent methods have tried to introduce large multimodal models (LMMs) into industrial anomaly detection (IAD), their generalization in the IAD field is far inferior to that for general purposes. We summarize the main reasons for this gap into two aspects. On one hand, general-purpose LMMs lack cognition of defects in the visual modality, thereby failing to sufficiently focus on defect areas. Therefore, we propose to modify the AnyRes structure of the LLaVA model, providing the potential anomalous areas identified by existing IAD models to the LMMs. On the other hand, existing methods mainly focus on identifying defects by learning defect patterns or comparing with normal samples, yet they fall short of understanding the causes of these defects. Considering that the generation of defects is closely related to the manufacturing process, we propose a manufacturing-driven IAD paradigm. An instruction-tuning dataset for IAD (InstructIAD) and a data organization approach for Chain-of-Thought with manufacturing (CoT-M) are designed to leverage the manufacturing process for IAD. Based on the above two modifications, we present Triad, a novel LMM-based method incorporating an expert-guided region-of-interest tokenizer and manufacturing process for industrial anomaly detection. Extensive experiments show that our Triad not only demonstrates competitive performance against current LMMs but also achieves further improved accuracy when equipped with manufacturing processes. Source code, training data, and pre-trained models will be publicly available at https://github.com/tzjtatata/Triad.
Abstract:In this paper, we aim ambitiously for a realistic yet challenging problem, namely, how to reconstruct high-quality 3D scenes from sparse low-resolution views that simultaneously suffer from deficient perspectives and clarity. Whereas existing methods only deal with either sparse views or low-resolution observations, they fail to handle such hybrid and complicated scenarios. To this end, we propose a novel Sparse-view Super-resolution 3D Gaussian Splatting framework, dubbed S2Gaussian, that can reconstruct structure-accurate and detail-faithful 3D scenes with only sparse and low-resolution views. The S2Gaussian operates in a two-stage fashion. In the first stage, we initially optimize a low-resolution Gaussian representation with depth regularization and densify it to initialize the high-resolution Gaussians through a tailored Gaussian Shuffle Split operation. In the second stage, we refine the high-resolution Gaussians with the super-resolved images generated from both original sparse views and pseudo-views rendered by the low-resolution Gaussians. In which a customized blur-free inconsistency modeling scheme and a 3D robust optimization strategy are elaborately designed to mitigate multi-view inconsistency and eliminate erroneous updates caused by imperfect supervision. Extensive experiments demonstrate superior results and in particular establishing new state-of-the-art performances with more consistent geometry and finer details.